Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Medicines (Basel) ; 11(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535120

RESUMO

Background: This study investigated how the expression of heat shock protein 27 (HSP27), cellular FLICE-like inhibitory protein (cFLIP), and clusterin (CLU) affects the progression of cancer cells and their susceptibility to doxazosin-induced apoptosis. By silencing each of these genes individually, their effect on prostate cancer cell viability after doxazosin treatment was investigated. Methods: PC-3 prostate cancer cells were cultured and then subjected to gene silencing using siRNA targeting HSP27, cFLIP, and CLU, either individually, in pairs, or all together. Cells were then treated with doxazosin at various concentrations and their viability was assessed by MTT assay. Results: The study found that silencing the CLU gene in PC-3 cells significantly reduced cell viability after treatment with 25 µM doxazosin. In addition, the dual silencing of cFLIP and CLU decreased cell viability at 10 µM doxazosin. Notably, silencing all three genes of HSP27, cFLIP, CLU was most effective and reduced cell viability even at a lower doxazosin concentration of 1 µM. Conclusions: Taken together, these findings suggest that the simultaneous silencing of HSP27, cFLIP, and CLU genes may be a potential strategy to promote apoptosis in prostate cancer cells, which could inform future research on treatments for malignant prostate cancer.

3.
Peptides ; 166: 171036, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269882

RESUMO

Nesfatin-1 is a polypeptide hormone known to regulate appetite and energy metabolism and is derived from the precursor protein nucleobindin 2 (NUCB2). Recent studies have shown that nesfatin-1 is expressed in many peripheral tissues in mice, including the reproductive organs. However, its function and regulation in the testis remain unknown. In this study, we investigated the expression of Nucb2 mRNA and nesfatin-1 protein in mouse Leydig cells and the Leydig cell line, TM3 cells. We also examined whether Nucb2 mRNA expression is regulated by gonadotropins and whether exogenous nesfatin-1 affects steroidogenesis in primary Leydig cells isolated from the testis and TM3 cells. We found that Nucb2 mRNA and nesfatin-1 protein were present in primary Leydig cells and TM3 cells, and nesfatin-1 binding sites were also found in both cell types. Nucb2 mRNA expression in testis, primary Leydig cells, and TM3 cells was increased after treatment with pregnant mare's serum gonadotropin and human chorionic gonadotropin. After nesfatin-1 treatment, the expression of steroidogenesis-related enzyme genes Cyp17a1 and Hsd3b was upregulated in primary Leydig cells and TM3 cells. Our results suggest that NUCB2/nesfatin-1 expression in mouse Leydig cells may be regulated through the hypothalamic-pituitary-gonadal axis and that nesfatin-1 produced by Leydig cells may locally regulate steroidogenesis in an autocrine manner. This study provides insight into the regulation of NUCB2/nesfatin-1 expression in Leydig cells and the effect of nesfatin-1 on steroidogenesis, which may have implications for male reproductive health.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cavalos/genética , Células Intersticiais do Testículo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleobindinas/genética , RNA Mensageiro/genética
4.
Anim Cells Syst (Seoul) ; 27(1): 129-137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351263

RESUMO

Estradiol (E2) and progesterone (P4) are essential sex steroid hormones that play critical roles in the pituitary gland and uterus. Recently, nesfatin-1, a polypeptide hormone that regulates appetite and energy homeostasis in the hypothalamus, was found to be expressed in the pituitary gland and uterus. In this study, we aimed to investigate the relationship between these two steroid hormones and the expression and function of nesfatin-1 in the pituitary gland and uterus using GH3 cells, a lacto-somatotroph cell line, and THESC cells, an endometrial stromal cell line. First, we verified the presence of nesfatin-1 and nesfatin-1 binding sites in GH3 and THESC cells. E2 increased the mRNA expression of NUCB2, the gene encoding the nesfatin-1 protein, in GH3 cells, while P4 had no significant effect. In THESC cells, NUCB2 mRNA expression was decreased by E2 but increased by P4. In addition, nesfatin-1 significantly increased growth hormone (GH) and prolactin (PRL) mRNA expression in GH3 cells, and E2 enhanced this effect. In THESC cells, nesfatin-1 significantly increased the mRNA expression of insulin-like growth factor binding protein 1 (IGFBP1) and PRL, which are decidualization marker genes, and P4 further enhanced this effect. These results suggest that nesfatin-1 may act as a local regulator of GH and PRL production in the pituitary gland and decidualization in the uterus, modulating its effects in response to E2 and P4.

5.
Anim Cells Syst (Seoul) ; 27(1): 120-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197085

RESUMO

Nesfatin-1, a polypeptide hormone derived from the nucleobindin 2 (NUCB2) precursor protein, is known to regulate appetite and energy metabolism. Recent studies have also shown that NUCB2/nesfatin-1 is expressed in the reproductive organs of mice. However, the expression and potential role of NUCB2/nesfatin-1 in the mouse epididymis remain unclear. Therefore, we investigated the expression of NUCB2/nesfatin-1 in the mouse epididymis and its potential function. NUCB2/nesfatin-1 was detected in the epididymis by qRT-PCR and western blotting, and high expression levels were observed in epididymal epithelial cells by immunohistochemical staining. Pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) injections significantly increased NUCB2/nesfatin-1 expression in the epididymis. After castration, NUCB2/nesfatin-1 expression in the epididymis decreased, but was significantly increased by testosterone injection. Nesfatin-1-binding sites were found in the middle piece of testicular sperm, but were scarcely detected in the sperm head. By contrast, nesfatin-1 binding sites were identified on the sperm head within the epididymis. Furthermore, nesfatin-1 treatment inhibited the acrosome reaction in epididymal sperm. These results suggest that the nesfatin-1 protein produced in the epididymis binds to nesfatin-1 binding sites on the sperm head and plays a role in suppressing the acrosome reaction before ejaculation.

6.
Biomedicines ; 11(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36979803

RESUMO

Hematopoietic injury resulting from the damage of hematopoietic stem/progenitor cells (HSPCs) can be induced by either nuclear accident or radiotherapy. Radiomitigation of HSPCs is critical for the development of medical countermeasure agents. StemRegenin 1 (SR1) modulates the maintenance and function of HSPCs under non-stress conditions. However, the impact of SR1 in radiation-induced hematopoietic injury both in vivo and in vitro remains unknown. In this study, we found that treatment with SR1 after irradiation of C57BL/6 mice significantly mitigates TBI-induced death (80% of SR1-treated mice survival vs. 30% of saline-treated mice survival) with enhanced recovery of peripheral blood cell counts, with the density and cell proliferation of bone marrow components as observed by Hematoxylin and Eosin (H&E) and Ki-67 staining. Interestingly, in vitro analysis of human HSPCs showed that SR1 enhanced the population of human HSPCs (CD34+) under both non-irradiating and irradiating conditions, and reduced radiation-induced DNA damage and apoptosis. Furthermore, SR1 attenuated the radiation-induced expression of a member of the pro-apoptotic BCL-2 family and activity of caspase-3. Overall, these results suggested that SR1 modulates the radioresponse of HSPCs and might provide a potential radiomitigator of hematopoietic injury, which contributes to increase the survival of patients upon irradiation.

7.
Cells ; 12(2)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672209

RESUMO

Papillary thyroid cancer (PTC) is the most prevalent histological type of thyroid cancer (TC) worldwide. Although tumor metastasis occurs in regional lymph nodes, distant metastasis (DM) may also occur. Radioactive iodine (RAI) therapy is an effective treatment for TC; however, resistance to RAI occurs in patients with DM. Therefore, in this study, we investigated the efficacy of DM-related biomarkers as therapeutic targets for PTC therapy. ABCA1 expression was higher in aggressive BCPAP cells than in other PTC cells in terms of migration and invasion capacity. The knockdown of ABCA1 substantially decreased the expression of the epithelial-mesenchymal transition (EMT) marker, N-cadherin, and EMT regulator (ZEB1), resulting in suppressed migration and invasion of BCPAP cells. ABCA1 knockdown also reduced ERK activity and Fra-1 expression, which correlated with the effects of an ERK inhibitor or siRNA-mediated inhibition of ERK or Fra-1 expression. Furthermore, ABCA1-knocked-down BCPAP cells suppressed cell migration and invasion by reducing Fra-1 recruitment to Zeb1 promoter; lung metastasis was not observed in mice injected with ABCA1-knocked-down cells. Overall, our findings suggest that ABCA1 regulates lung metastasis in TC cells.


Assuntos
Neoplasias Pulmonares , Neoplasias da Glândula Tireoide , Animais , Camundongos , Transportador 1 de Cassete de Ligação de ATP , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Radioisótopos do Iodo , Invasividade Neoplásica , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo
8.
Dev Reprod ; 26(4): 135-144, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36817357

RESUMO

As the number of coronavirus disease 2019 (COVID-19) vaccinations increases, various side effects are being reported, and menstrual abnormalities have been reported as a side effect in women. However, it is still unclear whether the COVID-19 vaccine has detrimental effects on the female reproductive system. Therefore, we investigated the effect of excessive immune response on reproductive function by administering Lipopolysaccharides (LPS) instead of the COVID-19 vaccine. The immune response in mice was induced by injection of LPS. Mice injected with saline 5 times were used as a control group, and mice injected with LPS 5 times were used as an experimental group. Repeated administration of LPS significantly reduced the number of corpus luteum (CL). On the other hand, the injection of LPS did not affect the development of follicles leading before the CL. The expression of the apoptosis-related genes Fas and Fas-L increased in the experimental group. In addition, the expression of the inflammation-related genes increased in the experimental group. In this study, we confirmed that LPS had detrimental effects on the uterus and ovaries in mice. These results suggest that injection of LPS can cause immune reactions within the uterus and ovaries and cause hormonal changes, which can have adverse effects such as abnormal operation or bleeding of the menstrual cycle. These results are expected to help determine the cause of decreased reproductive function, infertility, or physiological disorders caused by the COVID-19 vaccine.

9.
Dev Reprod ; 25(4): 213-223, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35141447

RESUMO

Controlled ovarian hyperstimulation (COH) is routinely used in the in vitro fertilization and embryo transfer (IVF-ET) cycles to increase the number of retrieved mature oocytes. However, the relationship between repeated COH and ovarian function is still controversial. Therefore, we investigated whether repeated ovarian stimulation affects ovarian aging and function, including follicular development, autophagy, and apoptosis in follicles. Ovarian hyperstimulation in mice was induced by intraperitoneal injection with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Mice subjected to ovarian stimulation once were used as a control group and 10 times as an experimental group. Repeated injections with PMSG and hCG significantly reduced the number of primary follicles compared to a single injection. The number of secondary and antral follicles increased slightly, while the number of corpus luteum increased significantly with repeated injections. On the other hand, repeated injections did not affect apoptosis in follicles associated with follicular atresia. The expression of autophagy-related genes Atg5, Atg12, LC3B, and Beclin1, cell proliferation-related genes mTOR, apoptosis-related genes Fas, and FasL was not significantly different between the two groups. In addition, the expression of the aging-related genes Dnmt1, Dnmt3a, and AMH were also not significantly different. In this study, we demonstrated that repeated ovarian stimulation in mice affects follicular development, but not autophagy, apoptosis, aging in ovary. These results suggest that repetition of COH in the IVF-ET cycle may not result in ovarian aging, such as a decrease in ovarian reserve in adult women.

10.
Dev Reprod ; 24(1): 43-52, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32411917

RESUMO

NUCB2/nesfatin-1 known to regulate appetite and energy homeostasis is expressed not only in the hypothalamus, but also in various organs and tissues. Our previous reports also demonstrated that NUCB2/nesfatin-1 was expressed in the reproductive organs, including the ovaries, uterus, and testes of mice. However, it is yet known whether NUCB2/nesfatin-1 is expressed in the oviduct and how its expression is regulated. Therefore, we investigated the expression of NUCB2/nesfatin-1 in the oviduct and its expression is regulated by gonadotropin. Immunohistochemical staining results showed that nesfatin-1 protein was localized in epithelial cells of the oviduct. As a result of quantitative real-time PCR (qRT-PCR) and Western blot, NUCB2/nesfatin-1 was detected strongly in the oviducts. During the estrus cycle, NUCB2/nesfatin-1 expression in the oviducts was markedly higher in the proestrus stage than in other estrus stages. In order to elucidate whether the expression of NUCB2 mRNA is controlled by the gonadotropins, we injected PMSG and hCG and measured NUCB2 mRNA level in the oviduct after injection. Its level was increased in the oviduct after PMSG injection, but no significant change after hCG injection. In addition, NUCB2 mRNA levels were markedly reduced after ovariectomy, while recovered after 17ß-estradiol (E2) injection, but not by progesterone (P4). This study demonstrated that NUCB2/nesfatin-1 is highly expressed in the oviduct of mouse and its expression is regulated by E2 secreted by the ovaries. These results suggest that NUCB2/nesfatin-1 expressed by the oviduct may affect the function of the oviduct regulated by the ovaries.

11.
Food Sci Biotechnol ; 28(6): 1819-1828, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31807355

RESUMO

This study was aimed to investigate the effect of red ginseng extract (RGE) on monocyte to macrophage differentiation and inflammatory signalings in THP-1 human monocytes. In HPLC analysis, RGE contained saponin level of 516 µg/mg (extract) with 14 ginsenosides. RGE effectively suppressed the monocyte-to-macrophage differentiation induced by phorbol 12-myristate 13-acetated (PMA) by inhibiting the THP-1 cell adhesion. This result is evidenced by the down-regulation of cluster of differentiation molecule ß (CD11ß) and CD36. RGE significantly reduced translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (78%), while cytosolic NF-κB was increased (53%), compared with LPS group. In addition, RGE significantly increased the protein abundance of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its target protein, hemoxygenase-1 (HO-1), but, Kelch-like ECH-associated protein 1 (KEAP1), a negative regulator of Nrf2, was greatly decreased by RGE. Furthermore, RGE effectively mediated the regulation of Nrf2 level in nucleus and cytoplasm of THP-1.

12.
Biochem Biophys Res Commun ; 513(3): 602-607, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30981497

RESUMO

NUCB2/nesfatin-1 is expressed in the hypothalamus and regulates food intake and energy metabolism. Recent studies showed that NUCB2/nesfatin-1 also plays a role in other organs. However, its expression pattern and function in female reproductive organs are unclear. Therefore, we investigated NUCB2/nesfatin-1 expression in the ovary and uterus of mice and determined whether it is regulated by gonadotropins and sex steroid hormones. NUCB2 mRNA and nesfatin-1 protein were detected in the ovary and uterus of mice. NUCB2/nesfatin-1 expression in both organs was highest in the estrus period of the estrus cycle. Administration of pregnant mare serum gonadotropin (PMSG) dose-dependently increased mRNA expression of NUCB2 in the ovary and uterus of mice. On the other hand, mRNA expression of NUCB2 in the uterus was dramatically decreased after ovariectomy and was not increased upon administration of PMSG. Injection of 17ß-estradiol upregulated mRNA expression of NUCB2 in the uterus of ovariectomized mice, whereas injection of progesterone did not. These results suggest that NUCB2/nesfatin-1 expression in the ovary and uterus of mice is regulated through the hypothalamus-pituitary-ovary axis and that NUCB2/nesfatin-1 is a local regulator of ovarian steroidogenesis and uterine function.


Assuntos
Nucleobindinas/metabolismo , Ovário/metabolismo , Útero/metabolismo , Animais , Estradiol/farmacologia , Ciclo Estral/genética , Ciclo Estral/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Gonadotropinas Equinas/farmacologia , Camundongos Endogâmicos ICR , Nucleobindinas/genética , Oócitos/metabolismo
13.
Dev Reprod ; 22(4): 331-339, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30680332

RESUMO

NUCB2/nesfatin-1 is first known to be expressed in the hypothalamus while controlling appetite and energy metabolism. However, recent studies have shown that NUCB2/nesfatin-1 was expressed in the various organs as well as the hypothalamus. Our previous reports also demonstrated that NUCB2/nesfatin-1 was expressed in the ovary, testis, pituitary gland, lung, kidney, and stomach of fetal and adult mice. However, the role of NUCB2/nesfatin-1 in mouse fetus remains unknown. Thus, the aim of this study was to investigate whether NUCB2/nestatin-1 is expressed in mouse fetus at the developmental stage in which organogenesis begins. To do this, we performed in situ hybridization (ISH) and immunohistochemistry (IHC) staining to examine the distribution of NUCB2 mRNA and nesfatin-1 protein in the mouse fetal organs during early developmental stages, especially at embryonic day (E) 10.5. As a result of ISH, NUCB2 mRNA positive signals were more frequent in the liver, but there were relatively few positive signals in heart. On the other hand, no positive signals were detected in other organs. These ISH results were validated by IHC staining and qRT-PCR analysis. Expression of nesfatin-1 protein detected by IHC staining was similar to that of NUCB2 mRNA detected by ISH in the liver and heart. In addition, the levels of NUCB2 mRNA expression analyzed by qRT-PCR were significantly increased in the liver and heart compared to other organs of the mouse fetus at E13.5, whereas its level was extensively decreased in the liver, but increased in the lung, stomach, and kidney of the mouse fetus at E17.5. These results suggest that NUCB2/nesfatin-1 may play an important role in liver and heart development and physiological functions in the developmental process of mouse fetus. Further studies are needed on the function of NUCB2/nesfatin-1, which is highly expressed in the various organs, including liver and heart during mouse development.

14.
Dev Reprod ; 21(1): 35-46, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28484742

RESUMO

The process of spontaneous abortion involves a complex mechanism with various cytokines, growth factors, and hormones during the pregnancy. However, the mechanism underlying spontaneous abortion by pro- and anti-inflammatory cytokines in the serum during the pregnancy is not fully understood. Therefore, the purpose of this study was to examine the relationship between the serum levels of pro- and anti-inflammatory cytokines and spontaneous abortion using the CBA/j × DBA/2 mouse model. Serum levels of pro-inflammatory cytokines, such as IFN-γ, IL-1α and TNF-α were not increased in abortion model mice, but anti-inflammatory cytokines, such as IL-4, IL-13 and IL-1ra were decreased compared to normal pregnant mice. In addition, serum levels of chemokine, such as SDF-1, G-CSF, M-CSF, IL-16, KC and MCP-1 were decreased in abortion model mice compared to normal pregnant mice. However, the expression levels of nesfatin-1/NUCB2 mRNA and protein in the uteri of implantation sites were significantly higher in abortion model mice than normal pregnant mice. These results suggest that uterine nesfatin-1/NUCB2 expression may be down-regulated by inflammatory cytokines and chemokines in the serum of pregnant mice. Moreover, this study suggests the possibility that nesfatin-1/NUCB2 expressed in the implantation sites may be associated with the maintenance of pregnancy.

15.
Dev Reprod ; 21(1): 71-78, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28484746

RESUMO

Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin-1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by 17ß-estradiol and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland.

16.
Peptides ; 63: 4-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25451467

RESUMO

Nesfatin-1 was first shown to be involved in the control of appetite and energy metabolism in the hypothalamus. Many recent reports have shown nesfatin-1 expression in various tissues including the pituitary gland, but its expression and regulation mechanisms in the pituitary gland are unclear. Therefore, first, we investigated the mRNA and protein expression of nesfatin-1 in the pituitary using qRT-PCR and Western blotting, respectively. Expression of NUCB2 mRNA and nesfatin-1 protein was higher in the pituitary gland than in other organs, and nesfatin-1 protein was localized in many cells in the anterior pituitary gland. Next, we investigated whether NUCB2 mRNA expression in the pituitary gland was regulated by sex steroid hormones secreted by the ovary. Mice were ovariectomized and injected with progesterone (P4) and 17ß-estradiol (E2). The expression of NUCB2 in the pituitary gland was dramatically decreased after ovariectomy and increased with injection of P4 and E2, respectively. The in vitro experiment to elucidate the direct effect of P4 and E2 on NUCB2 mRNA expression showed NUCB2 mRNA expression was significantly increased with E2 and decreased with P4 alone and P4 plus E2 in cultured pituitary tissue. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the mouse pituitary and was regulated by P4 and E2. These data suggest that reproductive-endocrine regulation through hypothalamus-pituitary-ovary axis may contribute to nesfatin-1/NUCB2 expression in the pituitary gland.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estradiol/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Hipófise/metabolismo , Progesterona/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/genética , Estradiol/farmacologia , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Sistema Hipotálamo-Hipofisário/fisiologia , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/genética , Nucleobindinas , Progesterona/farmacologia , Técnicas de Cultura de Tecidos
17.
Dev Reprod ; 19(4): 243-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26973976

RESUMO

The pregnancy and abortion process involves a complex mechanism with various immune cells present in the implantation sites and several hormones associated with pregnancy, such as leptin, ghrelin and nesfatin-1. However, the mechanism underlying spontaneous abortion by maternal T helper 17 (Th17) present in the implantation sites and nesfatin-1, which is of anorexigenic hormones, is not fully understood so far. Therefore, the purpose of this study was to examine the possible roles of Th17 cells present in the implantation sites and nesfatin-1 expressed in the uterus on spontaneous abortion using the CBA/j × DBA/2 mouse model. Th17 transcription factor, ROR-γt mRNA expression was significantly increased in the abortion sites compared with the implantation sites of abortion model mice on day 14.5 and 19.5 of pregnancy. In addition, the expression levels of IL(-1)7A mRNA were significantly higher in abortion sites than in implantation sites on day 14.5 and 19.5. Moreover, the nesfatin-1/NUCB2 protein and mRNA levels were increased in abortion sites compared with levels in implantation sites of both normal pregnant and abortion model mice on day 14.5 of pregnancy. Interestingly, nesfatin- 1/NUCB2 serum levels were not changed throughout the whole pregnancy in abortion model mice, but its serum level was dramatically increased on day 14.5, and then rapidly decreased on day 19.5 in normal pregnant mice. In this study, we showed for the first time the expression of nesfatin-1/NUCB2 mRNA and protein in implantation sites during pregnancy. The present results suggest that Th17 cells in the uterus may play an important role in the period of implantation and for maintenance of pregnancy. Furthermore, the present results suggest that Th17 cells in implantation sites may be a key regulator for maintenance of pregnancy and provides evidence that activation of these cells may be regulated by nesfatin-1/NUCB2. Further study is needed to elucidate the role of nesfatin-1 expressed in the uterus during pregnancy.

18.
Dev Reprod ; 18(4): 301-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25949201

RESUMO

Nesfatin-1, an anorexic nucleobindin-2 (NUCB2)-derived hypothalamic peptide, controls appetite and energy metabolism. Recent studies show that nesfatin-1/NUCB2 is expressed not only in the brain but also in gastric and adipose tissues. Thus, we investigated the distributions of nesfatin-1/NUCB2 in various tissues of male and female mice by real-time PCR, western blotting, and immunohistochemical staining. Real-time PCR analyses showed that NUCB2 mRNA was predominantly expressed in the pituitary and at lower levels in the hypothalamus, spleen, thymus, heart, liver, and muscle of both male and female mice. Expression was much higher in reproductive organs, such as the testis, epididymis, ovary, and uterus, than in the hypothalamus. Western blot analysis of the nesfatin-1 protein level showed similar results to the real-time PCR analyses in both male and female mice. These results suggest that nesfatin-1/NUCB2 have widespread physiological effects in endocrine and non-endocrine organs. In addition, immunohistochemical staining revealed that nesfatin-1 was localized in interstitial cells, including Leydig cells and in the columnar epithelium of the epididymis. Nesfatin-1 was also expressed in theca cells and interstitial cells in the ovary and in epithelial cells of the endometrium and uterine glands in the uterus. These results suggest that nesfatin-1 is a novel potent regulator of steroidogenesis and gonadal function in male and female reproductive organs. Further studies are required to elucidate the functions of nesfatin-1 in various organs of male and female mice.

19.
ScientificWorldJournal ; 2013: 174392, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23853530

RESUMO

We evaluated effect of dual gene silencing of Hsp27 and c-FLIP in doxazosin-induced apoptosis of PC-3 cell. After transfection using Hsp27 and c-FLIP siRNA mixture (dual silencing), doxazosin treatment was done at the concentrations of 1, 10, and 25 µ M. We checked apoptosis of PC-3 cells with and TUNEL staining. We also checked interaction between Hsp27 and C-FLIP in the process of apoptosis inhibition. Spontaneous apoptotic index was 5% under single gene silencing of Hsp27 and c-FLIP and 7% under dual silencing of Hsp27 and c-FLIP. When doxazosin treatment was added, apoptotic indices increased in a dose-dependent manner (1, 10, and 25 µ M): nonsilencing 10, 27, and 52%; Hsp27-silencing: 14, 35, and 68%; c-FLIP silencing: 21, 46, and 78%; dual silencing: 38, 76, and 92%. While c-FLIP gene expression decreased in Hsp27- silenced cells, Hsp27 gene expression showed markedly decreased pattern in the cells of c-FLIP silencing. The knockout of c-FLIP and Hsp27 genes together enhances apoptosis even under 1 µ M, rather than low concentration, of doxazosin in PC-3 cells. This finding suggests a new strategy of multiple knockout of antiapoptotic and survival factors in the treatment of late-stage prostate cancer refractory to conventional therapy.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Doxazossina/administração & dosagem , Proteínas de Choque Térmico HSP27/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sinergismo Farmacológico , Inativação Gênica , Terapia Genética/métodos , Humanos , Masculino , Neoplasias da Próstata/patologia , Resultado do Tratamento
20.
Stem Cells Dev ; 22(12): 1818-29, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23373441

RESUMO

Transplantation and drug discovery programs for liver diseases are hampered by the shortage of donor tissue. While recent studies have shown that hepatic cells can be derived from human embryonic stem cells (hESCs), few cases have shown selective enrichment of hESC-derived hepatocytes and their integration into host liver tissues. Here we demonstrate that the dissociation and reaggregation procedure after an endodermal differentiation of hESC produces spheroids mainly consisted of cells showing hepatic phenotypes in vitro and in vivo. A combined treatment with Wnt3a and bone morphogenic protein 4 efficiently differentiated hESCs into definitive endoderm in an adherent culture. Dissociation followed by reaggregation of these cells in a nonadherent condition lead to the isolation of spheroid-forming cells that preferentially expressed early hepatic markers from the adherent cell population. Further differentiation of these spheroid cells in the presence of the hepatocyte growth factor, oncostatin M, and dexamethasone produced a highly enriched population of cells exhibiting characteristics of early hepatocytes, including glycogen storage, indocyanine green uptake, and synthesis of urea and albumin. Furthermore, we show that grafted spheroid cells express hepatic features and attenuate the serum aspartate aminotransferase level in a model of acute liver injury. These data suggest that hepatic progenitor cells can be enriched by the spheroid formation of differentiating hESCs and that these cells have engraftment potential to replace damaged liver tissues.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/terapia , Células-Tronco Embrionárias/citologia , Endoderma/transplante , Hepatócitos/transplante , Esferoides Celulares/transplante , Albuminas/biossíntese , Animais , Biomarcadores , Proteína Morfogenética Óssea 4/farmacologia , Tetracloreto de Carbono , Técnicas de Cultura de Células , Diferenciação Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dexametasona/farmacologia , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Glicogênio/biossíntese , Sobrevivência de Enxerto , Fator de Crescimento de Hepatócito/farmacologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Nus , Oncostatina M/farmacologia , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Transplante Heterólogo , Ureia/metabolismo , Proteína Wnt3A/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...